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Abstract 

As Next Generation Sequencing (NGS) becomes common practice in the diagnostic genetic 

setting it becomes important to examine the mediated and co-constructed impact NGS 

technologies have upon diagnostic laboratory and clinical practice. This is explored here in 

relation to how the mutual situated co-configuration of the technology and the users redefines 

understandings of certainty and uncertainty associated with genetic and genomic data. I show 

how a maintained pragmatic understanding that genomic data and technology is in a constant 

state of uncertainty, termed acceptable contingency, enables laboratory workers to be able to 

adapt the technology and the data produced to meet their situated needs. I suggest that this 

process of reflexive standardisation is only possible due to a deep technical understanding of the 

technology as well as an embeddedness within the space in which the technology and genomic 

data-bases are developed. 

 

Introduction 

Next Generation Sequencing (NGS) is increasingly making its way into diagnostic practice from 

the research setting. In doing so, NGS is designed to supplant existing sequencing technologies 

as the primary genetic and genomic diagnostic sequencing technology in the diagnostic 

laboratory. NGS serves as a broad category of modern sequencing technologies defined by their 

ability to sequence DNA and RNA at a much higher rate than and lower cost than their primary 

predecessor, Sanger sequencing. The NGS methodology employed at the diagnostic laboratory 

reported on here is Illumina Sequencing, this is the most popular commercial sequencing 

methodology due to its relatively low cost when compared to competitors, as well as the 

production of a high volume of data per run (around 15Gb of data per run using Illumina MiSeq 

(Illumina, 2017). Despite the reported benefits of the transfer to NGS from Sanger sequencing in 

the diagnostic genetics setting the translation of this technology from the research into the 

diagnostic setting is not a linear process. Instead it is considered a complex, dynamic process, 

defined by compromise and situated adaption to a mutually co-constituted (Shostak, 2005) 

ends.  
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Previous research has examines the clinical use of genetic testing (Latimer, 2013) and more 

recently Next Generation Sequencing (Timmermans, 2015), however this paper specifically 

examines accounts of how the increased quantity of genomic and genetic data is negotiated in 

the NHS laboratory and clinic. The interface and sharing of information between the laboratory 

and the clinic will also be examined, focussing upon how professionals share situated notions of 

confidence in data that are not consistent with defined practical standards. In doing so I will put 

into question the ‘trust in numbers’ hypothesis put forward by Theodore Porter (1995), instead 

asserting that big genomic data sets are viewed by clinicians and laboratory scientists as in a 

permanent state of acceptable contingency. By taking the perspective of those who 

contextualise, translate and interpret genomic data sets in practice in the clinic and the lab, I 

argue that clinicians and laboratory scientists are not ‘data-dopes’. This terminology is in-

keeping with MacKenzie and Spears (2012) definition ‘model-dope’ (p.7), which is itself a 

derivative of Garfinkel’s (1967) ‘cultural-dope’ (p. 68). Both use the ‘dope’ as a rhetorical device 

designed to create an unreflexive other who naively reproduce the conditions of the culture in 

which they live or accept the outputs of a particular economic model without reflecting upon 

the model from which the output was derived. It is not clear that data-dopes exist in the clinical 

or laboratory setting, however Levin (2014) has observed an instance of what could be 

considered a data-dope in her study of a metabolomics research group. Levin gives the example 

of a biochemist who presented data to the metabolomics research group without reflecting 

upon the technology used to produce the data. The biochemist simply accepted the black-boxed 

explanation given by the developer of the technology, in doing so the biochemist failed to take 

into consideration the irreducible complexity of the metabolism held to be true by the 

metabolomics research group. I will show that laboratory and clinical professionals are aware of 

the effect increasingly large datasets have on their local practice and their profession as a whole, 

and that they do not naively accept big data outputs as wholly objective, or indeed useful. 

Through this I will show how clinicians and laboratory geneticists perform ‘reflexive 

standardisation’ (Timmermans, 2015) based on the perceived discrepancies between the 

technology and clinical utility. In examining these issues this article will consist of two sections. 

The first will discuss how developments in genomic science and the use of big data have shaped 

clinicians and laboratory scientists practice in the NHS, this section will draw upon scholarship  

showing how visualisations of data are active in the construction of the reality they are designed 

to represent (Levin, 2014; Lynch and Woolgar, 1990; Woolgar, 1991). The second section will 

discuss how these same clinicians and scientists mobilise and manipulate technologies as 

situated to their local practices and needs. I describe how clinical professionals are not passive 

recipients of NGS technologies, instead in line with Oudshoorn (2016), clinicians and scientists 

are positioned as actively engaged in re-configuring the technology and data output based upon 
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their situated needs. Taken together, this creates socio-technical network of local co-

construction (Oudshoorn and Pinch, 2013) in which the technology shapes practice, however it 

does so within an existing system and thus is adapted to the existing practical and political 

infrastructure. 

 

Methods 

This article draws on data gathered as part of a research project examining the organisation of 

the space in which genetic testing for inherited cardiac conditions is undertaken within the UK 

health care system. During this time, many diagnostic services across the UK were in the 

process of transitioning aspects of their services from Sanger sequencing to Next Generation 

Sequencing. At this time (April 2014 – December 2015), many centres were actively negotiating 

how to deal with the impact of adopting this new technology on the organisation of the 

laboratory as well as the relations between clinicians, professionals in the genetics laboratory 

and the big genetic data produced by the NGS technology. The data were gathered from multiple 

sites across the UK (N=8) all of which specialised in the diagnosis and treatment of ICC’s, either 

in the clinic, the laboratory or both. Across these sites, interviews were conducted with a variety 

of professional groups, including; clinical geneticists, laboratory geneticists, specialist 

cardiologists, genetics counsellors and specialist arrhythmia nurses. I also observed practices at 

one large NHS laboratory which serves as an international referral centre for cardiac genetic 

testing. In addition to this, I observed 8 cardiac genetics multi-disciplinary team meetings 

(MDT’s) at a large tertiary hospital. These meetings were attended by 8-10 healthcare 

professionals who were actively involved in the management of patients, either from the 

discipline of cardiology or clinical genetics. The primary function of this MDT was to decide 

whether a patient should receive genetic testing or not as well as which test they should receive. 

These meetings also often discussed how to deal with genetic test results in terms of the impact 

these results would have on the diagnosis and treatment of the patient and their family. A multi-

site approach was taken to gain insight into the way that different professional systems manage 

the use of genetic testing within their existing infrastructures. 

Big Genomic Data in the NHS 

Genomic Data in the NHS 

The benefits of Whole Genome Sequencing (WGS) for research purposes in the field of rare 

diseases have been made clear, the primary benefit is that it enables the identification of novel 

gene mutations associated with rare diseases (Genomics England, 2015b). This has been the 
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lynch pin of the rare disease mission of the 100,000 Genomes Project, positioned as ‘Gene 

Discovery’ (Genomics England, 2015a). Gene Discovery has been rationalised by Genomics 

England as a way of assisting in the interpretation of variants of uncertain significance (VUS), 

thus they present a reduction in uncertainty as a product of an increased quantity of data, 

committing to gather data from 50,000 people with rare diseases and their families. This 

prioritisation of quantity as a means of alleviating uncertainty has come to represent objectivity 

in modern times (Porter, 1995; Hacking, 1990). This subscribes to the common big data 

narrative in which ‘Raw data’ are a source of exploration and discovery, as an untapped, 

objective resource. In genomic science the larger the data set the more representative it is seen 

to be. An example of this is seen in the way researchers justify their findings or indeed criticise 

others. Elijah Behr et al. (2015) successfully used a big data approach to overpower a smaller 

research study (Hu, et al 2014) which claimed an association with mutations on the Sodium 

channel gene SCN10A and the rare cardiac channelopathy Brugada Syndrome. Behr and his 

colleagues main area of contention with this study was their small sample of 200 matched 

controls1. By conducting their own larger study which used the UK10K project database as 

matched controls, Behr et al. (2015) was able assert authority over the concerned claim, 

refuting Hu’s research. The UK10K database is considered quantitatively superior to Hu’s 

control in 2 ways; firstly it is a database of genome or exome sequences, whereas Hu’s control 

was of the single gene SCN10A and secondly the database consists of over 7000 individuals’ 

exome or genome sequence data to control against (The UK10K Consortium, 2015). The sheer 

weight of data was mobilised to increase the legitimacy of Behr’s argument: 

‘Our data suggest that rare variation in SCN10A, particularly in SCN5A mutation negative 

cases, is unlikely to cause BrS (Brugada Syndrome). This contrasts markedly with a 

recent paper by Hu et al. which identified SCN10A mutations in 16.7% of 150 BrS 

probands... This difference in yield cannot be explained from a technical perspective as 

conventional Sanger sequencing was undertaken in both studies. Of note, Hu et al 

studied only 200 ethnically matched controls without finding any missense rare 

variants. This is unsurprising as ESP and UK10K data both show that there are plenty of 

rare variants in controls but larger numbers are required to detect them reliably... Thus 
                                                           
1 Frequency/absence of mutations in the general population, through the use of matched controls, is 1 of 
7 criteria for attributing significance to a variation in a gene, promoting it from the category of variant to 
mutation. The other criteria are: 

 Reports in the literature; 
 Co-segregation in (preferably) trios; 
 Conservation (of the amino acid across species); 
 Functional domains (does the function of the amino acid reflect the phenotype); 
 Presence in unrelated individuals with the phenotype; 

 And, Functional studies. 
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our ‘enriched’ cohort and more stringent ‘mutation’ definition are more likely to be 

representative of the yield of novel rare SCN10A variants in BrS.’ 

(Behr et al 2015, p. 16-17) 

 This ultimately resulted in mutations in SCN10A to be considered as of unknown significance by 

the research and clinical community in line with Behr’s et al. (2015) findings (Conversation with 

cardiologist)2.  

While in genetic research papers, sample/dataset size is correlated with certainty3, in the health 

service genomic data is used very differently, owing to a different functional priority. Clinicians 

contest that newer technologies and larger gene panels actually increase uncertainty, as 

opposed to the decrease in uncertainty promised by research:  

‘You have to be careful... the more genes you have the more uncertain you are.’  

(Clinical Geneticist 2)  

In the clinical setting size does not equal certainty. It is important to note here that before 

complex NGS testing, where services were only testing at most a few genes per condition, 

clinicians were not more certain. However, clinicians were more certain of the validity of the 

gene mutations they did test for (Timmermans et al. 2016), during this time there were far more 

negative results, which does not preclude the possibility of a pathogenic genetic mutation. This 

is a distinction not in the scale of uncertainty but the type of uncertainty. NGS has heralded 

uncertainty associated with the validity of gene mutations found, where as pre-NGS testing was 

dominated by uncertainty associated with the ability of a test to capture gene mutations in the 

first place.  

Negative genetic test results are welcomed in the clinical setting in particular circumstances, 

this is explained as the main difference between the use of genomics in research and the NHS. In 

the research setting the introduction of NGS technologies has had dramatic effects in terms of 

gene discovery for rare conditions as a Clinical Geneticist with a research interest described: 

                                                           
2 This represents a shift in genomics research in which only those with adequate resources and 
connections can now produce valid scientific claims, creating class systems located around centres of 
excellence. 
3 This is not to say that in the researchers naively analyse large genomic data sets as objective fields of 
‘raw’ data which can be unreflexively mined. But it is to say that the strength of a research paper is 
increasingly measured by the size of the sample or data set drawn from. As this research has not directly 
observed or conducted interviews in relation to the negotiation of big genomic data-bases within 
research projects, I cannot make any claims beyond the way in which this data is mobilised as a sign of 
authority. 
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‘The biggest change for us... has been this adoption of NGS. From a research side of 

things one of the things we have been doing is trying to identify new genes that cause 

rare diseases... We have had a lot of experience at doing that and had a lot of success in 

identifying the genetic basis of a whole range of diseases.’  

(Clinical Geneticist 2) 

Where as in the clinic there is:  

‘A huge shift in emphasis, in science they look for the most variance and this is exciting, 

where as in the clinical setting no variance is a good thing, it means the patient does not 

possess the pathogenic variant.’  

(Laboratory Geneticist)  

This Geneticist is referring to the ‘good-going’ (MDT3) gene mutations, these are the gene 

mutations that are ‘known’ to be responsible for a large proportion of the conditions. If the 

patient is not found to have one of these gene mutations, the result is positive. This outlook is 

particularly useful when considering the testing of phenotype negative individuals. These may 

be family members who have experienced a sudden death (which is the most serious 

consequence of ICC’s), or these may be family members of gene positive patients, in which case 

a negative genetic test can rule out a patient for further interventions as they ‘do not possess the 

family gene’(Clinical Geneticist, 3). Thus genomic data, as is used in research, is not that useful 

in clinical practice for the majority of referrals, which are the patients with clearly visible 

phenotypes, who are found to have the ‘good-going’ mutations. These cases have become 

routinized, and it is more clinically useful and efficient to use traditional Sanger sequencing 

techniques focusing on a specific gene or genes. The clinic and the laboratory have a high level 

of certainty that these mutations cause the phenotype - these are the black and white cases. 

Where NGS does become useful is in the grey cases those with complex phenotypes who are not 

suspected to possess the most common gene mutations. 

How Genomic Data has Shaped Genetics in the NHS 

Contrary to the significant shifts in emphasis between Genomic research and the clinical 

genetics in the NHS, Big Genomic science has not only shaped the practices of NHS genetics 

services but also the way in which clinicians and scientists view their profession and future 

developments in the field. This extends debates instigated by Steve Woolgar (1990) in that 

genomic data sets and NGS technology attempt to denote its prescribed uses and users. The first 

way in which genomic data sets configure their users is by denoting who the users are, the 
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format of the data they access as well as how they use the data. For example, data outputs from 

the 100,000 Genomes Project will only be made available through Genomics England secure 

server and permitted users (members of healthcare or research organisations) have to agree to 

data access agreements (Genomics England, 2015a). ‘Raw data’ cannot be exported from this 

database so users are restricted to the format prescribed by Genomics England. This is equally 

the case for the reference genome which was produced at the end of the Human Genome 

Project. As such for a researcher or a clinician to compare their data to that held within this 

database they must format their data in the same way4. For the research community, legitimacy 

hinges on validation through large whole genome control samples as shown earlier. This has 

been extended to health service genetics, that are no longer solely reliant on reports in the 

literature as a way of validating uncertain findings: 

‘We look at population cohorts who have had whole genome or whole exome screening 

and we use them very much to try and determine whether a variant is pathogenic or not. 

So if you have found it at a high frequency you can have more confidence that it is not a 

pathogenic mutation and we use that information in our interpretations.’  

(Laboratory Geneticist). 

This kind of work has emigrated from the research community and is becoming increasingly 

important in the clinical diagnosis of ICC’s, in which much of the research associated with 

variants are highly contestable. In many respects, genomic datasets define how clinicians and 

NHS laboratories assign validity to a mutation; the image of objectivity (Daston and Galison, 

1992) has been engineered in genetic practice to be represented by validation through quantity 

of data outweighing the value of the corpus of scientific research in the area.  Although clinical 

geneticists and cardiologists in the field of ICC’s do not access genomic data sets directly, the 

ethic of validity based upon genomic population controls penetrates the value that they 

attribute to variants. A Cardiologist discussing this referred to the value he attributes to a 

generally accepted association between mutations on SCN5A and Brugada syndrome:  

‘...for Brugada syndrome it [genetic testing] is totally unhelpful, the original study [(Chen 

et al. 1998)] was not even controlled properly... the guidelines say it might be helpful, 

but not in my experience.’  

(Cardiologist 2) 

                                                           
4 The model for representing genome assemblies currently advocated by the Genome Reference 
Consortium which governs the reference genome is GRCh38. This format has been adopted across the 
world as to be compatible with the reference genome. 
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Such an insight was gained by this clinician through embedded experience with genomic data 

and genomic research which utilise much larger data sets. Prior to the prevalence of  the use of 

genomic data in research the imperfections of Chen’s et al. (1998) study were overlooked on the 

premise that an imperfect answer was better than no answer. Genomic data sets have enabled 

reflection upon the usefulness of previously commonly held beliefs. Thus, Genomic data sets 

have transformed the standards (Timmermans and Berg, 1997) of clinical genetics practice by 

redefining the standard of validity and certainty.  

Data analysis and interpretation in the NHS laboratory is the most labour intensive task for the 

genetic scientist following the introduction of NGS, a by-product of the increased throughput 

and capacity offered by this technology is an exponential increase in the size of the data output. 

With gene panels of up to 72 genes in the field of cardiac genetics, the output can be considered 

big data in its own respect, in that the yield is far more data than an individual can analyse. This 

has dramatically changed the workflow of the NHS genetics laboratory. Technicians and genetic 

scientists specialized in particular conditions and followed patients through the lab before the 

introduction of NGS, however with increasing throughput and automation of key processes in 

the laboratory, workers increasingly specialize in one stage of the process, adopting post-fordist 

modes of production, similar to that reported in studies of large biological research laboratories 

(Stevens, 2011; Hilgartner, 2013; Mackenzie et al 2016). The impact of this on the genetic 

scientist is that they spend little to no time in the ‘wet lab’:  

‘We never come to the lab any more... I don't even know how to use the next gen 

machine. We just do the analysis, techs do the first line we do the rest... I liked the old 

ways it was like 'real science'. That's not saying that the job is any less interesting it is 

interesting in different ways now we can do so much more now. 

 (Laboratory Observations) 

The scale of data yielded from NGS necessitates this dramatic change in working practices in the 

laboratory setting to enable the management of the data.  

Bioinformatics pipelines have been established to assist in this transition, filtering the data into 

a manageable quantity. Much of the bioinformatics software used in the clinical setting is 

outsourced to the technology provider. The software used at the laboratory I visited showed all 

the base pairs screened across the top of the screen, with all covered base pairs automatically 

highlighted by the program (there are often gaps in sequence data due to allelic dropout5). The 

                                                           
5 Allelic dropout describes the process by which copies of alleles fail to be amplified by the PCR 
(Polymerase Chain Reaction), this results in missing data in the readout (Wang et al, 2012). 
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program then focussed the gaze of the genetic scientist to the ‘known’ variants in the sequence, 

these being variations from the control sequence data as well as ‘known’ pathogenic variants’ 

associated with the phenotype. The interpretation by the genetic scientist is only undertaken on 

the remaining highlighted sections, her analytic gaze is focussed by the software to specific base 

pairs, as much of the process as possible is externally automated. Genetic Scientists are limited 

in this respect as the processes of data manipulation which lead to the output that they receive 

is ‘black-boxed’.  

One of the greatest successes of the translation of NGS technology to the clinical setting is the 

acceptance of the inherent uncertainty associated with many of the findings (Calvert, 2008). 

Uncertainty is nothing new for clinical cardiac genetics, ICC’s are complex; there are issues of 

incomplete penetrance and there is a high proportion of mutations considered highly 

pathogenic in the general populations (See SCN5A). For one of the better understood cardiac 

genetic conditions, Long QT Syndrome, the 5 most common genes associated with this condition 

are only thought to explain 68% of cases (Splawski et al, 2000). However, the advent of NGS in 

the clinic altered the narrative of uncertainty, in that it strengthening ideas of temporality of 

uncertainty. When using NGS in the clinic, finding a variant does not always equate to 

attributing validity there is much more liminality, in which patients are between diagnostic 

categories. Much of this is based on the implicit understanding that knowledge relating to the 

genetic nature of ICC’s is far from complete. A narrative of development from certainty to 

uncertainty has been presented using two analogies, with pre-NGS testing compared to ‘picking 

the low hanging fruit’, or ‘catching the fish at the surface’6. This represents the notion that 

before NGS, geneticists were only able to identify the ‘good-going’ gene mutations. However as 

these mutations are found it becomes more difficult to explain the phenotypes of those without 

the good-going mutations. This often results in finding Variants of Uncertain Significance (VUS), 

the negotiation of which is a major problem when ‘you throw your net wide looking at as many 

genes as possible’ (Clinical Geneticist 1) as is done when using NGS: 

‘I always counsel about variants of uncertain significance, and we still have patients who 

come back and say; ‘Well I don’t understand you have found the gene change so why 

can’t you just do the blood test’. Then you have to cover it again and say: ‘We did discuss 

this possibility in which we would find a variant that we weren’t certain about and that 

we wouldn’t offer to people who weren’t affected. We don’t know enough about the 

                                                           
6 These analogies were given by a representative from Genomics England on two occasions: in 2014 at the 
annual AICC meeting and in 2015 at the Cardiff International Cardiac Genetics Symposium. They were 
given as a way of presenting the rare disease gene identification agenda of the 100,000 genomes project, 
suggesting that the project could help identify the harder to reach mutations due to the use of whole 
genome sequencing. 
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people with the condition who also have this spelling mistake and therefore we don’t 

have enough proof that it’s the cause.’  

(Genetic Counsellor 3) 

Much of this kind of narrative rests on presumed limitations in the technology and assumes that 

finding quantitatively more patients with the mutation would increase certainty: 

‘...as technology develops we can do more tests. So it’s making the family understand 

that they are not necessarily missing something but that it is a limitation of the 

technology.’  

(Clinical Geneticist 1) 

This is the first aspect of acceptable contingency, by this I mean the acceptance by clinicians and 

laboratory geneticists of the ‘promissory narrative’ (Stephens, 2013) provided by the genomic 

research community even though they understand the inherent uncertainties that the 

technology brings. Although genomic science does not constitute what Hedgecoe (2004. P.515) 

terms a ‘promissory science’, in that it is well established and has had huge implications and 

applications in the research and clinical setting. This extends Merton’s (1942) notion of 

‘organised skepticism’ in that I suggest no closure of this skeptisism, instead suggesting a 

pragmatic acceptance of the inconsistencies and uncertainties of a technology following critical 

scrutiny. This does not reduce the ‘hope and hype’ (Marris, 2005. p.1) narrative, promising a 

greater understanding of the nature of genotype-phenotype correlations through the 

exploration of ever-expanding genomic databases. This was not a difficult ‘vision’ (Martin, 

2001) to sell to clinicians in this field as the majority of the specialist geneticists in cardiac 

genetics are also research active.  

The clinical acceptance of the rhetoric of temporary uncertainty is now embedded in clinical 

practice, whereby clinical geneticists and genetic counsellors present findings as contingent 

upon scientific developments and more data. The primary mechanism by which this contingent 

uncertainty is performed, can be seen when a clinician is faced with a negative test result for a 

phenotype positive patient. In these cases, clinicians often wait for developments in the 

research setting to translate to the clinical setting and then re-tests the patient or family: 

‘We have a number of families where we have tested them right from the outset with 

our half a gene, and then the 3 gene, then the 4, the 13 and now the 16 gene screen. We 

still haven’t found anything, it makes us think right ‘have we missed something because 

the technology before hasn’t allowed us to detect it and this technology has also missed 
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the same thing’. We don’t like having those families and they would be the first ones that 

we go back to and say: ‘Oh by the way we have got a new test, fancy putting them on 

because we really want to find something’. We have got a family at the moment that has 

had a DCM [Dilated Cardiomyopathy]  test, it’s been one of our families for years, and we 

have just found a lamin A mutation and that completely explains the phenotype.... We 

offer the best that we can at the time and keep up to date with making changes.’ 

(Laboratory Geneticist) 

The emergent nature of our ability to interpret genetic findings also allows the possibility of 

‘Red Herrings’ (Clinical Geneticist 1) in which new information sheds doubt upon the validity of 

a particular mutation and clinicians then have to re-categorise patients on this basis, certainty 

of findings is rarely presented by clinicians. 

The narrative thus far has been of how the change to high-throughput genetic technologies such 

as NGS has shaped modern clinical genetic practice in the NHS. The big biological data 

revolution and the resultant bioinformatics emigration into the NHS laboratory has engineered 

the ‘correct’ (Levin, 2014) way to analyse genetic data as well as defining that which is valid for 

interpretation, and the form of the output produced by the Laboratory (Timmermans and Berg, 

2003). This shift has also changed the material practices and tempo of the NHS genetics 

laboratory, with automated systems running 24 hours a day and technicians managing the 

technology. Perhaps the greatest impact the shift to NGS has made on cardiac genetic clinical 

practice has been the enculturation of the idea that genomic data is not only vast but emergent, 

flexible and dynamic (Rose, 2013), which has had the effect of realigning notions of certainty. 

Although of course VUS’s were around long before NGS, they were rarer in the clinical setting. 

The introduction of NGS and the potential of WGS has heralded the possibility of a deluge of 

mutations, this creates a problem of quantitatively more uncertainty as well as the problem 

shifting from having to negotiate whether the VUS is significant to having to negotiate which 

VUS is significant and being able to say why. 

 

Contextualisation, Transformation and Manipulation of Genomic Data 

Situated data for situated practice 

The previous section discussed the impact of developments in genomic technologies in the NHS 

clinical genetics setting. However presenting the relationship between the clinic and the 

technology in this way assumes that clinicians and laboratory scientists are uncritical 

consumers of the technology, it assumes they are ‘data-dopes’. The potential of the consumer of 
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genetic technology to become a data-dope has been observed in previous research by Bourret et 

al. (2011), in which they reported on diagnostic tools used to identify genetic tumour 

signatures. These tools had been marketed as prognostic and predictive by their creators and 

utilised algorithms which provided results that the clinicians themselves could neither derive, 

confirm, nor validate independently, due to the lack of transparency as to the means by which 

the result is constructed. However, Bourret et al. (2011) reported strong oppositions to 

technologies which excluded clinical autonomy, to the extent that the FDA created a separate 

category to regulate such devices. This is not to reduce the impact of NGS in the NHS lab and the 

clinic, however the translation of research to the clinic cannot be represented as neutral or one 

sided where clinicians and scientists alike naively accept the data as objective. In fact, this 

process is a strongly negotiated one, underpinned by an understanding of genomic science and 

genomic datasets as mutable, dynamic and fallible and that clinicians and laboratory geneticists 

are able to mobilize the data beyond their pre-defined configurations. Clinicians and scientists 

are intrinsically aware that genomic data sets are both ‘cooked’ and ‘noisy’, as opposed to raw 

and clean. This section will discuss the effect of this in the NHS clinic and laboratory. This is part 

of acceptable contingency, as suggested earlier when clinical geneticists were shown to accept 

NGS in spite of the heightened uncertainty it yielded. This being for the most part owing to the 

acceptance of the ‘promissory narrative’ (Stephens, 2013) given by genomic science but also 

due to the perceived improvement in clinical utility that NGS yields. Utility in this respect is 

relative, based upon a definition from clinical chemistry, which describes a key aspect of utility 

as the extent to which the test (or technology) affects ‘health outcomes relative to the current 

best alternative’ (Bossuyt et al 2012, p. 1). 

Drawing on Stefan Timmermans (2015) work on the negotiation of standards by clinicians in 

the clinical genetics setting, this section will discuss how clinicians and laboratory geneticists 

employ a process of ‘reflexive standardization’ (Timmermans, 2015. p.79). Examining how 

clinicians and laboratory geneticists ground the standards, in this case being the standard ways 

of negotiating genomic datasets and technologies within their situated practice, creating 

‘situated data’. 

Situating the Data 

This argument is supported by a strong pedigree of previous research, much of which centres 

around the idea that local clinical experience outweighs scientific consensus when making 

clinical decisions. Bosk was an early proponent, stating: 

‘in the case of discrepant opinions, arguments based on clinical expertise override those 

based on scientific evidence.’  
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(Bosk, 1979. p.85)  

Latimer et al. (2006) and her colleagues similarly found this in relation to the value attributed to 

negative genetic testing showing that local clinical experience with the patient outweighs the 

findings of a genetic test and the presence of the genetic condition is not discounted. Hedgecoe 

(2008) went as far as to show how when considering the usefulness of APOE4 testing in 

Alzheimer’s disease patients, clinicians would disregard genetic findings in favour of clinical 

findings and experience. Although this has been discussed in MDT’s, it is generally avoided by 

clinicians, by focusing the technology only on what they see as clinically relevant prior to 

conducting the test. Although only certain clinicians who have a genetics lab within their NHS 

trust have the freedom to select which genes are analysed, ICC clinics across England and Wales 

have the autonomy to select which gene panel they use. This is firstly because there is a 

significant difference in the constitution of panels for individual and grouped conditions 

between laboratories, and secondly because each panel test within each centre is made up of 

different genes. This is most notable where a patient presents with a non-typical phenotype as 

was the case at an arrhythmia MDT: 

 ‘Cardiologist: I think we should definitely look for Danon 

Clinical Geneticist: The thing is, LAMP2 is on the HCM (Hypertrophic  Cardiomyopathy) 

panel. So we could look for others using this to cover more things like sarcomere and I 

don’t think our funding stream would support just a DCM (Dilated Cardiomyopathy) 

panel. 

Paediatric Cardiologist: So we are looking at the extended HCM panel. Well she did 

initially present with increased LV (Left-ventricular) mass so...’ 

(MDT8) 

The patient in this case was a young girl presenting with DCM a weakening and thinning of the 

heart muscle, however the clinicians suspected from her pedigree that she might have Danon 

disease, a rare disease presenting with either DCM or HCM. Guidelines dictate that when a 

patient presents with DCM they should receive targeted genetic testing (Ackerman et al, 2011), 

however targeted testing in the guidance does not cover LAMP2. Clinicians in this case asserted 

autonomy, not in their judgement over the validity of the test but of its ability to capture the 

nuances of the patient’s phenotype, thus increasing their chances, from their experienced 

perspective, of finding a clinically useful mutation. This furthers discussions instigated by 

Latimer et al. (2006), who position the clinic as an active site of knowledge production. They 

show how genetic categorisation is achieved based upon the interaction between clinical 
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experience and genetic test results, they position genetic categorisation as a flexible 

accomplishment at the point at which biomedical collectives (Rabeharisoa and Bourret, 2009) 

converge. Similarly, Stivers and Timmermans (2016) show how genetic diagnostic uncertainty 

is actively negotiated in the genetics clinic between clinicians and patients. While these studies 

emphasise clinical autonomy in the negotiation of genetic test results, the above suggests that 

clinical negotiation begins at the point of selecting the which panel of genes to test. 

In the laboratory, clinical needs and preferences are taken into account in the data filtering and 

analysis stage rather than at the point the test is undertaken. For every sample received for a 

cardiomyopathy panel or an arrhythmia panel test, the laboratory will run their entire panel 

and filter the findings so to only analyse the genes in the locations associated with the 

phenotype as given by the clinician: 

‘In the New Year we will have a new panel and essentially we will run it on every patient 

that we are requested a cardiac genetic test on. We run all 72 genes but we only analyse 

those dependant on the phenotype, we categorise them into different conditions, long qt, 

hypertrophic cardiomyopathy... So it might be for ARVC that we screen 6 of the genes 

out of the 72, the data is there for the 72 but we only look at 6. That speeds up the 

analysis, it means we have got a single pipeline for the testing but in terms of generating 

the result, it means that it’s quicker and we are not looking at data that potentially isn’t 

informative and that would delay and actually maybe even complicate things. If however 

new phenotypic information comes to light we could always come back and look at that 

data.’  

(Clinical Geneticist 2) 

Much of this is cost related. It costs the lab the same amount to test for 6 genes as it does 72 by 

virtue of using the same technology and the same amount of reagent. The main variable in cost 

based on size of the panel is accumulated at the analysis stage. This is equally the case when 

clinical exome sequencing is undertaken: 

‘I see a number of patients with rare conditions where we have got a good idea of what 

the potential genes could be but there is no testing available for those in a routine 

diagnostic lab anywhere. The only way really to integrate those is by using an exome 

and we run the whole exome but we would only pick out certain genes that we were 

interested in looking at.’  

(Clinical Geneticist 2) 
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This filtering process is a process of practicality. In the NHS setting, genetic testing is not 

undertaken on an exploratory basis – rather, genetic testing for ICC’s is commissioned on the 

basis that around 50% of test results will be gene positive (Cardiologist 3). However, this is also 

a sign of the culture of risk aversion in clinical genetics (Timmermans, 2015). Laboratories will 

not send out a report based on a mutation they are not sure about, in terms of association with 

the reported phenotype. It does not make sense for them to analyse a gene they would not 

report on. This is also a practical data management technique, as clinical laboratories simply do 

not have the time to analyse each base pair in a whole exome, or even each variant. Calling this 

whole exome sequencing brings up interesting questions about the relationship between the 

technology and the analyst. The whole exome has been sequenced so the process has been 

technically achieved, however the data output in its ‘raw’ form is simply stored away, so an 

analyst may never see it. Pragmatically this process has its advantages in that if no pathogenic 

variants are found in the genes analysed then the scope of the investigation can be broadened 

without having to go through the technical process of taking a blood sample, extracting the DNA 

and re-sequencing other parts of the patients exome. The process of storing sequence 

information is both economic and efficient, particularly where there is uncertainty associated 

with where the mutation is likely to be. It also serves to alleviate the ethical problem of 

incidental findings in that this information is only assigned meaning following human 

interpretation (for a discussion of the ethical issues of disclosing WES results in the clinical 

setting see Hallowell, et al, 2015). 

Representational Uncertainty 

Data is further filtered by the bioinformatician who works with the geneticists in the lab. By 

having a bioinformatician as part of the laboratory team, ‘pipelines’ and software can be 

developed to represent the particular needs of both the laboratory and the population they 

serve, ensuring that the geneticists get locally appropriate data. This is valued by the particular 

centre I visited due to their past involvement in WGS, in which they were made aware of the not 

inconsequential variation in the genomes they sequenced compared to the large data sets such 

as the Reference Human Genome: 

‘When you map the whole genome and we have done 30 here, you find 5-10 X excess 

[variation in the normal population] more than what you would expect. We have found 

many class 5 variations [‘known’ to be pathogenic] for long QT syndrome and Brugada 

Syndrome. This is a lot more than you would expect to find in the general population 

which makes you question earlier assertions.’  

(Clinical Geneticist 1) 
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This centre and many others had the perception that all genomes were more or less the same 

(over 99%). However, the validity of this claim is increasingly coming into question. The cause 

and resolution to this misunderstanding comes from genomic datasets. Because of the size of 

these datasets, deviations from the mean, become increasingly invisible – as the size of the 

dataset increases it is considered more representative of what a normal human genome should 

look like. However recent evidence suggests that even the genomes of monozygotic twins vary 

slightly, mostly through copy number variation (Bruder et al, 2008), and these changes can have 

significant consequences with reports of discordant monozygotic twins, where one suffers with 

a congenital heart defect. The result of this experience is the understanding that genomic 

datasets do not truly represent their local situation, thus an effort is made to situate the data 

themselves. This can be seen as a form of reflexive standardisation (Timmermans, 2015) as 

professionals in the clinic and the lab are not simply rejecting the assumptions made by large 

international genomic datasets but manipulate these assumptions to better fit their experience 

and practice. 

Because clinical genetics services in the UK tend to get local referrals, the genetic variance in 

their clinical population is far more constrained than an international genome database and this 

has great implications for the utility of testing for certain genetic mutations. A good example of 

this come from genetic testing for Cystic Fibrosis in British Pakistani populations: 

‘We have a standard UK Cystic Fibrosis test but we have also designed one which is 

targeted for the Pakistani British population so it picks up all the mutations that arrive 

within that population, applying the British test is completely pointless, it doesn’t have 

the same pick up rate.’ 

 (Clinical Geneticist, 2) 

The most common Cystic Fibrosis mutation, deltaF508, is reported to be present in 74.1% of 

Cystic Fibrosis sufferers in the UK; however, it only represents 24.7% of British Pakistani Cystic 

Fibrosis sufferers (McCormick, et al 2002). The pickup rate of a Cystic Fibrosis panel would be 

very low for this minority population, which is a particularly large demographic for this 

geneticist. In this case, the genomic databases and population studies do not represent the local 

clinical population so the data is situated post-hoc to account for this. Although the situation is 

perhaps less striking in cardiac genetics it none the less persists and has implications for both 

the mutations that are looked for and value attributed to certain genes reported in the 

literature. A laboratory geneticist discussing her cohorts noted how this is particularly tricky: 
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‘We get a lot of referrals from [location] and there is a specific mutation we have found 

in some [minority group] families, we don’t know whether they are related as well. Now 

we tend to get asked for the [minority] mutation, if they send us a sample from 

[minority] families... Where we find that [mutation] we will contact the clinician and 

we’ll say ‘by the way we’ve found this’, because they may not know that this is not 

common in the rest of our cohort.’ 

(Laboratory Geneticist) 

This centre is also an internationally renowned referral centre, receiving many referrals from 

New Zealand that causes a similar issue: 

‘We have got a couple of new Zealand families... who have got the same mutation that 

we’ve not found it in any of the UK families or any others in the world. Alongside that, 

there are other variants that you find in different populations as well. You usually end 

up classifying them as unlikely to be pathogenic but sometimes they are UV’s (unknown 

variants). In Maori New Zealand people or black Africans, you would expect to find 

genetic variation or variants that you are not familiar with in Caucasians.... It does make 

it tricky to interpret because the cohorts of information that tend to be published are in 

Caucasian populations. We are not testing a lot of African people so it doesn’t cause a big 

problem. But, if we were suddenly to have a collaboration with an African country or 

community we might need to think about what other data we would need to interpret 

those variants.’  

(Laboratory Geneticist) 

Although this issue of diversity in datasets is reducing over time as more genomes are 

sequenced across the world, there remains an understanding at the clinical level that databases 

of genomic information are over populated by Caucasian samples.  

It is through recognising this representational uncertainty within genomic databases in terms of 

both the racial demography and the ability of the databases to accurately capture the genetic 

characteristics of their local populations that clinicians and scientists are able to reflexively 

attribute clinical value to some recognised variants over others. In the same vein this 

uncertainty offers clinicians the opportunity to attribute validity where scientific consensus 

would be at best uncertain, however officially this is far more difficult to achieve. Laboratory 

Geneticists are restricted in their reports in terms of the autonomy they have to attribute 

significance to variants that are not supported in the literature or are not recognised on OMIM 

(Online Mendelian Inheritance in Man) or HGMD (the Human Gene Mutation Data Base) (See, 
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Timmermans, 2015 for a discussion on these databases). As a result, the laboratory conveys 

their situated certainty in more subtle ways as to avoid any future comeuppance as a 

professional accountable group. This is only achievable through close collaboration with the 

clinic:  

 ‘We wouldn’t necessarily report something because we think it might be doing 

something, everything is evidence based in terms of what our reports say. As much as 

we might think that a mutation... and I mean we sit there and think about a mutation 

because we are just not sure how to report it. There is one gene at the moment, 

Tropomyosin, we know just from our reading in terms of the function of the gene and 

how well conserved it is, we know that if we found a mutation in there it is going to be 

what has caused the phenotype, but there is not much reported out there. So in terms of 

evidence building we can’t hang it on anything. You can’t just say I think that’s what’s 

happening. The expectation of the clinician is that actually they may also think that it is 

pathogenic and they may also tell the patient that it’s highly likely to be pathogenic but 

we haven’t said that on our report and we can’t say that.’  

(Laboratory Geneticist) 

By not providing black and white answers to the clinician, which this geneticist claims they are 

no longer able to do, she is putting trust in the clinician to be able to interpret the genetic test 

report in relation to the patient’s phenotype, attributing validity or discrediting the findings on 

this basis. The clinician-lab relationship is incredibly important for the laboratory geneticist, she 

needs to trust that the clinician has the ability to expertly interpret her report and situate it as 

part of the differential diagnosis of the patient and their family. As such, the laboratory will only 

accept referrals from within the community of cardiac genetics, including clinical geneticists as 

well as some specialist cardiologists: 

‘We tend to phone and check with a cardiologist because... they are very confident 

people and you know they, in their eyes they have requested the most appropriate test 

for their patient, but they might not necessarily understand all of the ins’ and outs of it 

and trying to get that message across is sometimes quite difficult.’  

(Laboratory Geneticist) 

The assumption that a certain level of expertise is required to negotiate genetic testing as 

opposed to other tests such as biochemistry permeates throughout the NHS genetics lab and 

clinic. The ability to interpret, manipulate and situate data is seen as a prerequisite entry 

requirement to the cardiac genetics professional community. This is precipitated by the 
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understanding that genomic datasets and the standards of practice in relation to these datasets 

do not reflect their local clinical needs and are more reflective of the needs of the research 

setting. However uncertainty of the value of genomic data is not solely based upon the inability 

of this data to fully encompass the characteristics of their local population, and by this I mean 

both demographically as well as in terms of the characteristics associated with gene mutations 

(i.e. phenotypical heterogeneity).  

Mechanical Uncertainty 

There is also an understanding that the technology itself is somewhat flawed in its ability to 

‘truly’ represent the human genome. This second type of uncertainty can be referred to as 

mechanical uncertainty in that it is uncertainty based on a deep, technical understanding of the 

technology used to the extent that the inaccuracies of the technology are known. For the 

laboratory geneticist this uncertainty is garnered through a familiarity with the processes of 

sequencing genes and whole genomes, they are also aware of the technical challenges of using 

the technology and the ways in which one would overcome such issues in a local environment. 

This reflects MacKenzie’s (1990) uncertainty trough where those close to the production of the 

knowledge or technology have a high level of uncertainty in relation to its ability to perform the 

task it is designed to do, and to produce an objective image of that which it is designed to 

capture. Mechanical uncertainty serves as a response to Daston and Galison’s (1992) Mechanical 

Objectivity (p.82). WGS and NGS as a whole marked a move in the biological sciences to become 

more ‘true to nature’ (Daston and Galison, 1992, p. 85), in that it is presented as a technology, 

that with very little human intervention can read and present an objective image of the human 

genome. However just like the human eye, this technology skips over some sections or focuses 

too heavily on others resulting in a subjective image of the human genome. NHS Laboratory 

geneticists see these issues and correct them as part of their everyday practice, they are green 

fingered and can get the technology to cover what they want through work-arounds and 

modifications: 

‘For NGS technology, we know that it doesn’t cover an entire gene or an entire region, 

there might be the odd base here and 2 bases there and 15 bases there that aren’t 

covered and that is because of the way that the probes bind to the original DNA. For the 

genes that have the highest clinical utility, so where most of the mutations are found in 

people with a certain disease, we will Sanger sequence across those gaps to make sure 

we have got complete coverage of that gene or of that exon... We know what the 

coverage of our test is, we know it might not pick up huge duplications it might not pick 

up huge deletions, it might not be very sensitive in homo-polymer tracts, which is a tract 
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of similar nucleotides all in a row, because the probes don’t like binding there, or they 

bond too strong and don’t dissociate when they should do. Over time and with 

experience you get to know more about the limitations of the test.’ 

 (Laboratory Geneticist) 

In this process of local ‘co-construction’ (Clarke and Fujimura, 1992, p. 7), the laboratory 

ensures that the technology used is fit to perform the task they designate. This is gained through 

a deep knowledge of the technology and its capabilities to perform the necessary tasks. 

Moreover, knowledge of what the test covers and what it does not, impacts the reports that are 

given to clinicians, mechanical uncertainties are not ignored they are instead embedded into the 

practices of the lab and minimised as much as possible. However, this does effect the labs 

interpretation of ‘objective’ datasets and the validity attributed to particular research findings. 

Because the NHS laboratory uses the same sequencing technology as the research setting they 

know the mechanical uncertainties associated with it, this mediates the certainty attributed to 

research findings and of control sequence data. For example the laboratory will further 

investigate areas of genes associated with conditions, which might not be fully covered by NGS 

because, in their experience, and based on a technical understanding of genomics they ‘know’ 

functionally that a mutation in this area could be responsible for the phenotype, even where it is 

not reported in the literature. This is not to say that NGS is not ‘the right tool for the job’ (Clarke 

and Fujimura, 1992) but instead pragmatically asserts it is the best tool for the job at their 

disposal at this time (Bossuyt, et al, 2012). By understanding the uncertainties, clinicians and 

laboratory geneticists can manipulate the technologies and data to reduce the uncertainties 

experienced in their local practice. 

The foregoing demonstrates how data and practice mutually structure one another – both in 

terms of how technology and genomic data structures the way it is used in the clinical setting 

and how the users re-configure the technology and data to better fit their situated practices.  

The broader significance of these observations about the connection of data to practice is what 

they highlight about the concept of ‘clinical usefulness’. The overarching argument of this paper 

is that genomic data only becomes clinically useful through a process of co-construction at a 

local level, through an interpretive employment of standards and a radical transformation of 

data.  

Clinicians are acutely aware of the constitution of genomic databases, as a result of the regular 

enrolment of patients into clinical trials and WGS projects. As such, it is the clinician that 

construct who are counted, they are responsible for data acquisition. Although they are not 

involved in the technical process of counting, they are still aware that the data they use is not 
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‘Raw’, in that participants are pre-selected and thus not representative. Laboratory Geneticists 

are also acutely aware that the datasets are not ‘clean’. Due to an understanding of the technical 

issues associated with DNA extraction and sequencing, the signal-to-noise ratio is far too high, 

as is shown by the way in which the laboratory post-hoc cleans the data output. 

The clinical use of NGS has instigated a relationship between big genomic data and clinical 

practice. However, genomic datasets are not used, they are worked with and worked on in 

relation to the needs and practices of the patients in a process of reflexive standardization 

(Timmermans, 2015). To this end, I argue that an implicit trust in the objectivity (Porter, 1995; 

Daston and Galison, 1992) of genomic data and sequencing technology, as embodied within 

large genome research collectives (Cambrosio et al, 2006) is a flawed representation in the 

therapeutic context. It is by seeing the data and technology as in a state of acceptable 

contingency that it becomes clinically useful. By perceiving the imperfections (substantive and 

local) inherent in the technology, practitioners in the clinic and the laboratory are able to re-

construct and manipulate the technology to a point of clinical usefulness. This expands debates 

concerning the resistance to or usefulness of a genetic technology (Hedgecoe, 2008) in the 

clinical setting to asking questions of how clinicians construct and re-construct technologies to 

fit their purpose. 

With genomic data becoming more accessible and prominent in the clinical setting and beyond, 

it becomes increasingly important to discuss its use in practice beyond the research setting. This 

paper shows how these datasets are considered both ‘noisy’ and ‘cooked’ by its users in the 

clinical setting. Understanding genomic data in this way precludes the possibility of ‘data-

mining’ in that the data genome sequencers produce are not naturally occurring nor can they be 

considered ‘raw’. Populations are purposely selected for inclusion in databases and the data is 

manipulated and reconfigured. The data is externally configured and locally reconfigured 

creating situated data appropriate for informing clinical decisions. It is important here to 

emphasise the place of genetic testing in the cardiac genetic clinical setting:  

‘The whole purpose of testing a patient who has got long qt syndrome or hypertrophic 

cardiomyopathy... the result would benefit in targeted selection of other at risk family 

members, not to the person. Frankly speaking, you do not require genetic testing to make a 

diagnosis, you can make the same diagnosis of these conditions by ECG or [ajmaline] 
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challenge
7
...  the main advantage was that once you know the mutation ... in the person, then 

all first degree relatives... could be offered the genetic assessment.’  

(Clinical Geneticist 3) 

In the vast majority of cases, genetic testing is used to confirm a diagnosis made based upon 

clinical presentations, or to cascade screen families of a patient with a clinical phenotype. 

Genetic testing is rarely predictive in this setting, but instead makes up part of the clinical 

picture, the weight and value of a genetic mutation is assessed by the clinician based upon 

his/her experience and expertise, there is no formula, validity is attributed on an individual 

basis. This is important to note when discussing the use of genomic data outside of the clinic in 

the insurance industry for example (Van Hoyweghen, 2007). Viewing genomic data as objective 

and representative risks a reduction in the complexities associated with using this data in 

practice. In saying this ‘data-dopes’ become a real risk, the possibility arises that certain groups 

may use the data without the pre-requisite expertise, without the skills to situate the data 

within their particular practice, which presents the very real risk of the inappropriate use of 

genomic data.  
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